Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways
نویسندگان
چکیده
Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1) chemical interaction between drugs, (2) protein interactions between drugs' targets, and (3) target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.
منابع مشابه
Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملSystematic enrichment analysis of microRNA expression profiling studies in endometriosis
Objective(s): The purpose of this study was to conduct a meta-analysis on human microRNAs (miRNAs) expression data of endometriosis tissue profiles versus those of normal controls and to identify novel putative diagnostic markers. Materials andMethods: PubMed, Embase, Web of Science, Ovid Medline were used to search for endometriosis miRNA expression profiling studies of endometriosis. The miRN...
متن کاملIn vitro study of drug-protein interaction using electronic absorption, fluorescence, and circular dichroism spectroscopy
In the near future, design of a new generation of drugs targeting proteins will be required. Considering the complex bond between the drug and protein, the structure and stability of the target protein should be considered. So far, a series of in vitro investigations have been conducted with the aim of predicting drug-biological medium interactions. In these studies, use of spectroscopic method...
متن کاملDINIES: drug–target interaction network inference engine based on supervised analysis
DINIES (drug-target interaction network inference engine based on supervised analysis) is a web server for predicting unknown drug-target interaction networks from various types of biological data (e.g. chemical structures, drug side effects, amino acid sequences and protein domains) in the framework of supervised network inference. The originality of DINIES lies in prediction with state-of-the...
متن کاملRelating drug–protein interaction network with drug side effects
MOTIVATION Identifying the emergence and underlying mechanisms of drug side effects is a challenging task in the drug development process. This underscores the importance of system-wide approaches for linking different scales of drug actions; namely drug-protein interactions (molecular scale) and side effects (phenotypic scale) toward side effect prediction for uncharacterized drugs. RESULTS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013